检索增强生成(RAG) 通过整合外部知识来提升大型语言模型(LLMs)的生成能力,已成为一种广泛应用的范式。然而,现有的RAG 方法通常侧重于知识的检索,而忽视了知识的应用过程,导致在检索到的事实与特定任务所需的推理之间产生脱节,比如让LLM解一道 ...
当前大语言模型(LLM)虽快速发展,但其错误输出可能导致患者获取有害医疗信息。来自未知机构的研究人员提出采用检索增强生成技术(RAG),在白内障手术场景中构建理论模型,通过增强信息准确性和医生监管,降低患者面向的医疗错误风险。 在眼科领域,检索 ...
本文提出TreeQA框架,通过逻辑树分解多跳问题、融合结构化(KG)与非结构化知识源,并引入迭代自校正机制,显著提升大 ...
Retrieval-Augmented Generation (RAG) is rapidly emerging as a robust framework for organizations seeking to harness the full power of generative AI with their business data. As enterprises seek to ...
Retrieval-augmented generation, or RAG, integrates external data sources to reduce hallucinations and improve the response accuracy of large language models. Retrieval-augmented generation (RAG) is a ...
Retrieval-Augmented Generation (RAG) systems have emerged as a powerful approach to significantly enhance the capabilities of language models. By seamlessly integrating document retrieval with text ...
Also: Make room for RAG: How Gen AI's balance of power is shifting For that reason, researchers at Amazon's AWS propose in a new paper to set a series of benchmarks that will specifically test how ...
当前正在显示可能无法访问的结果。
隐藏无法访问的结果